20,378 research outputs found

    Spin Structure of the Nucleon - Status and Recent Results

    Full text link
    After the initial discovery of the so-called "spin crisis in the parton model" in the 1980's, a large set of polarization data in deep inelastic lepton-nucleon scattering was collected at labs like SLAC, DESY and CERN. More recently, new high precision data at large x and in the resonance region have come from experiments at Jefferson Lab. These data, in combination with the earlier ones, allow us to study in detail the polarized parton densities, the Q^2 dependence of various moments of spin structure functions, the duality between deep inelastic and resonance data, and the nucleon structure in the valence quark region. Together with complementary data from HERMES, RHIC and COMPASS, we can put new limits on the flavor decomposition and the gluon contribution to the nucleon spin. In this report, we provide an overview of our present knowledge of the nucleon spin structure and give an outlook on future experiments. We focus in particular on the spin structure functions g_1 and g_2 of the nucleon and their moments.Comment: 69 pages, 46 figures. Report to be published in "Progress in Particle and Nuclear Physics". v2 with added references and minor edit

    Dispersion analysis techniques within the space vehicle dynamics simulation program

    Get PDF
    The Space Vehicle Dynamics Simulation (SVDS) program was evaluated as a dispersion analysis tool. The Linear Error Analysis (LEA) post processor was examined in detail and simulation techniques relative to conducting a dispersion analysis using the SVDS were considered. The LEA processor is a tool for correlating trajectory dispersion data developed by simulating 3 sigma uncertainties as single error source cases. The processor combines trajectory and performance deviations by a root-sum-square (RSS process) and develops a covariance matrix for the deviations. Results are used in dispersion analyses for the baseline reference and orbiter flight test missions. As a part of this study, LEA results were verified as follows: (A) Hand calculating the RSS data and the elements of the covariance matrix for comparison with the LEA processor computed data. (B) Comparing results with previous error analyses. The LEA comparisons and verification are made at main engine cutoff (MECO)

    Observations and scaling of travelling bubble cavitation

    Get PDF
    Recent observations of growing and collapsing bubbles in flows over axisymmetric headforms have revealed the complexity of the ‘micro-fluid-mechanics’ associated with these bubbles (van der Meulen & van Renesse 1989; Briancon-Marjollet et al. 1990; Ceccio & Brennen 1991). Among the complex features observed were the bubble-to-bubble and bubble-to-boundary-layer interactions which leads to the shearing of the underside of the bubble and alters the collapsing process. All of these previous tests, though, were performed on small headform sizes. The focus of this research is to analyse the scaling effects of these phenomena due to variations in model size, Reynolds number and cavitation number. For this purpose, cavitating flows over Schiebe headforms of different sizes (5.08, 25.4 and 50.8 cm in diameter) were studied in the David Taylor Large Cavitation Channel (LCC). The bubble dynamics captured using high-speed film and electrode sensors are presented along with the noise signals generated during the collapse of the cavities. In the light of the complexity of the dynamics of the travelling bubbles and the important bubble/bubble interactions, it is clear that the spherical Rayleigh-Plesset analysis cannot reproduce many of the phenomena observed. For this purpose an unsteady numerical code was developed which uses travelling sources to model the interactions between the bubble (or bubbles) and the pressure gradients in the irrotational flow outside the boundary layer on the headform. The paper compares the results of this numerical code with the present experimental results and demonstrates good qualitative agreement between the two

    The Skylab concentrated atmospheric radiation project

    Get PDF
    The author has identified the following significant results. Comparison of several existing infrared radiative transfer models under somewhat controlled conditions and with atmospheric observations of Skylab's S191 and S192 radiometers illustrated that the models tend to over-compute atmospheric attenuation in the window region of the atmospheric infrared spectra

    A nonlinear model dynamics for closed-system, constrained, maximal-entropy-generation relaxation by energy redistribution

    Full text link
    We discuss a nonlinear model for the relaxation by energy redistribution within an isolated, closed system composed of non-interacting identical particles with energy levels e_i with i=1,2,...,N. The time-dependent occupation probabilities p_i(t) are assumed to obey the nonlinear rate equations tau dp_i/dt=-p_i ln p_i+ alpha(t)p_i-beta(t)e_ip_i where alpha(t) and beta(t) are functionals of the p_i(t)'s that maintain invariant the mean energy E=sum_i e_ip_i(t) and the normalization condition 1=sum_i p_i(t). The entropy S(t)=-k sum_i p_i(t) ln p_i(t) is a non-decreasing function of time until the initially nonzero occupation probabilities reach a Boltzmann-like canonical distribution over the occupied energy eigenstates. Initially zero occupation probabilities, instead, remain zero at all times. The solutions p_i(t) of the rate equations are unique and well-defined for arbitrary initial conditions p_i(0) and for all times. Existence and uniqueness both forward and backward in time allows the reconstruction of the primordial lowest entropy state. The time evolution is at all times along the local direction of steepest entropy ascent or, equivalently, of maximal entropy generation. These rate equations have the same mathematical structure and basic features of the nonlinear dynamical equation proposed in a series of papers ended with G.P.Beretta, Found.Phys., 17, 365 (1987) and recently rediscovered in S. Gheorghiu-Svirschevski, Phys.Rev.A, 63, 022105 and 054102 (2001). Numerical results illustrate the features of the dynamics and the differences with the rate equations recently considered for the same problem in M.Lemanska and Z.Jaeger, Physica D, 170, 72 (2002).Comment: 11 pages, 7 eps figures (psfrag use removed), uses subeqn, minor revisions, accepted for Physical Review
    • …
    corecore